Угрозы компьютерной безопасности Парольная защита операционных систем Криптографические ключи Аппаратное и программное шифрование Информационная деятельность Технологии программирования

Информационная защита. Курс лекций по информатике

Периодическая сменяемость паролей

Даже при наличии “изюминок” схема аутентификации пользователей путем проверки их паролей имеет один очень серьезный недостаток. Ведь не исключено, что линия связи, соединяющая персональный компьютер Антона с сервером информационно-коммерческой службы, проходит по территориям 33-х стран, законодательство которых по-разному трактует права своих и иностранных граждан на сохранение в тайне их личной переписки. И поэтому узнать пароль Антона, в принципе, может любой, кто сумеет подключиться к этой линии связи или обратиться в память сервера и узнать пароль, прежде чем для него будет вычислено соответствующее хэш-значение. Чтобы уменьшить ущерб от компрометации пароля, его следует периодически менять. Делается это следующим образом.

Антон генерирует случайное число R и пересылает его серверу, который вычисляет, исходя из этого числа и однонаправленной функции f, значения x1=f(R), x2=f(f(R)), x3=f(f(f(R))) и т. д. 101 раз. Первые 100 вычисленных значений x1, x2, . . . , х100 передаются Антону в качестве списка паролей, который он должен хранить в тайне. A х101 запоминается на сервере.

Теперь, когда Антон захочет зарегистрироваться для работы на сервере, ему достаточно ввести свое имя и число х100. Сервер вычислит f(x100) и сравнит его с х101. В случае совпадения Антону будет разрешен доступ к серверу, который затем заменит х101 на х100. А Антон вычеркнет х101 из своего списка паролей.

Безопасность в компьютерных сетях Выполнение курсовой работы

В следующий раз, когда Антон снова захочет получить доступ к серверу, он найдет в списке паролей следующее по порядку не зачеркнутое значение xj. Сервер вычислит f(xj) и сравнит с запомненным xj+1.

Злоумышленник Зиновий, взломавший сервер, все равно не сможет узнать очередной пароль Антона xj по хранимому на сервере значению xj+1, поскольку функция f является однонаправленной. По той же самой причине, даже если Зиновий перехватит xj, это позволит ему зарегистрироваться под именем Антона всего лишь один раз. А значения x1, x2, . . . , xj-1 так и останутся для Зиновия тайной за семью печатями при условии, что Антон достаточно ответственно относится к хранению списка паролей, полученного им с сервера.

Аутентификация при помощи криптосистем с открытым ключом

Ни “изюминки”, ни периодически сменяемый пароль не гарантируют защиту от злонамеренных действий Петра, перехватывающего все сообщения Антона, которые тот пересылает по линии связи, соединяющей его с сервером. Решить эту проблему помогает применение криптографии с открытым ключом.

Предполагается, что на сервере имеется файл, в котором хранятся открытые ключи всех пользователей. В первом приближении криптографический протокол, который позволяет производить аутентификацию пользователей, выглядит так:

1. Сервер генерирует случайную битовую строку и посылает ее Антону.

2. Антон шифрует эту строку при помощи своего тайного ключа и

 отсылает обратно на сервер.

3. На сервере производится расшифрование сообщения, пришедшего от

 Антона, с помощью его открытого ключа.

4. Если полученный в результате открытый текст идентичен случайной

 битовой строке, ранее посланной Антону, последний получает доступ к

 серверу.

Поскольку только Антон знает свой тайный ключ, никто не сможет выдать себя за Антона. Этот тайный ключ, скорее всего, представляет собой длинную битовую строку, которую очень трудно воспроизводить по памяти, и поэтому в распоряжении Антона должен быть интеллектуальный терминал, надежно защищенный от взлома и способный автоматически осуществлять набор требуемого тайного ключа при шифровании сообщений. Однако несмотря на это дополнительное условие, важнее всего то, что тайный ключ Антона не требуется передавать на сервер ни под каким видом. Следовательно, для надежной аутентификации пользователей совсем не обязательно наглухо защищать от подслушивания канал связи, соединяющий терминал Антона с сервером. Да и информация о пользователях, хранимая на сервере, может быть безо всякой опаски сделана доступной для всех, кто пожелает с ней ознакомиться.

Конечно, со стороны Антона глупо шифровать на своем тайном ключе произвольную битовую последовательность, причем вне зависимости от ее происхождения. Поэтому на практике для аутентификации пользователей обычно используется более сложный криптографический протокол:

1. Антон производит некоторые специальные вычисления на основе

предварительно сгенерированной им случайной битовой последовательности и своего тайного ключа. Затем он отсылает вычисленные им значения на сервер.

2. Сервер посылает Антону случайную битовую последовательность,

 отличную от той, которая была задействована Антоном на шаге 1.

3. Антон производит некоторые специальные вычисления на основе

обеих случайных битовых последовательностей (сгенерированной им самим, а также полученной с сервера) и своего тайного ключа. Затем он отсылает вычисленные значения на сервер.

4. На сервере производятся некоторые специальные вычисления на

основе присланных Антоном значений и его открытого ключа, чтобы убедиться в том, что именно он является обладателем соответствующего тайного ключа.

5. Если проверка дает положительный результат, Антону разрешается

 доступ к серверу.

Если Антон, в свою очередь, не доверяет серверу в такой же степени, в какой сервер не доверяет ему, то он может потребовать, чтобы сервер аналогичным образом “удостоверил свою личность”, воспользовавшись тем же самым протоколом.

Формальный анализ криптографических протоколов

Криптографические протоколы, предназначенные для аутентификации и обмена ключами, играют очень важную роль в обеспечении надежного функционирования современных компьютерных систем. Усилиями криптологов было создано много таких протоколов, однако по прошествии времени выяснилось, что не все из них позволяют должным образом защитить компьютерную систему от несанкционированного доступа и предотвратить компрометацию ключей. Причем для некоторых протоколов этот временной промежуток оказался довольно значительным и растянулся на несколько лет. Как следствие, возникла настоятельная потребность в разработке формальных методов, которые позволили бы находить изъяны в криптографических протоколах в более короткие сроки. И хотя большинство из этих методов являются универсальными и могут быть использованы для анализа произвольных криптографических протоколов, особое внимание изначально стало уделяться именно протоколам, позволяющим производить аутентификацию пользователей и обмен ключами.

К настоящему времени имеется 4 основных подхода к анализу криптографических протоколов. Первый из них применяет верификационные методы, которые не были специально разработаны для анализа криптографических протоколов. Некоторые из этих методов представляют протоколы в виде конечных автоматов, другие распространяют на них теорию исчисления предикатов первого порядка.

Второй подход заключается в использовании экспертных систем, позволяющих определить, возникают ли в ходе выполнения шагов протокола такие нежелательные события, как компрометация ключа или разглашение пароля. Этот подход дает возможность эффективнее находить в криптографических протоколах конкретные изъяны, однако никоим образом не гарантирует полного отсутствия таковых.

Авторами третьего подхода являются американские криптологи М. Бэрроуз, М. Абади, Р. Нидхэм (М. Burrows, M. Abadi, R. Needham). Они разработали формальную логическую модель, названную по первым буквам их фамилий БАН-логикой (BAN-logic). Составить с ее помощью общее представление о надежности криптографического протокола нельзя. Однако основное преимущество БАН-логики перед другими подходами заключается в том, что она состоит из набора простых логических правил, которые легко применяются на практике и весьма полезны при обнаружении отдельных изъянов в анализируемых протоколах.

При четвертом подходе выполнение шагов протокола моделируется с помощью алгебраической системы, которая строится исходя из знаний, имеющихся у участников протокола относительно этого протокола. Затем построенная алгебраическая модель подвергается формальному анализу на предмет достижимости некоторых из ее состояний.

В целом формальный анализ криптографических протоколов пока является довольно новой и до конца не сформировавшейся областью криптологии, и поэтому делать далеко идущие выводы о превосходстве какого-то одного из перечисленных четырех подходов еще рановато. Поживем — увидим.

Основные криптографические протоколы Обмен ключами Распространенным приемом в криптографии является шифрование каждого передаваемого сообщения с помощью отдельного ключа. Такой ключ называется сеансовым, поскольку используется только на протяжении одного сеанса связи. Каким образом сеансовый ключ попадает в распоряжение отправителя и получателя шифрованного сообщения?

Многоключевая криптография с открытым ключом В криптографии с открытым ключом используются 2 ключа, один из которых применяется для зашифрования сообщений, а другой — для расшифрования. Вместо этого можно задействовать любое количество ключей. Рассмотрим для примера трехключевую криптосистему с открытым ключом.

Вспомогательные криптографические протоколы Отметка о времени создания файла Существует немало ситуаций, когда людям приходится доказывать, что некий документ уже существовал в определенный момент времени. Например, в споре об авторском праве на изобретение побеждает тот, кто предъявит самую раннюю копию описания сути этого изобретения.

Неоспоримая цифровая подпись Довольно легко получить точную копию обычной цифровой подписи. Иногда это приходится очень кстати, особенно если цифровая подпись стоит под объявлением, предназначенным для всеобщего ознакомления. Однако свободно циркулирующее личное или деловое письмо, в подлинности которого в состоянии убедиться всякий, может поставить его автора в довольно неловкое положение, не говоря уже об опасности прямого шантажа. Поэтому лучше применять такую цифровую подпись, которую можно проверить, но нельзя продемонстрировать посторонним лицам без согласия ее владельца.


Рынок информационных продуктов и услуг: структура и характерные особенности