Математика Математический анализ Предел функции Физический смысл производной Дифференциалы высших порядков Исследование поведения функции Построение графиков функций Интегрирование подстановкой Интегрирование по частям

Математический анализ лекции и задачи

Множества. Операции над множествами

В математике первичными понятиями являются понятия множества и элемента множества. Множества обозначают большими латинскими буквами A, B, ..., а их элементы – малыми a, b, ... Если элемент a принадлежит множеству A, то пишут aÎA. В противном случае пишут aÏA.

Множество, не содержащее ни одного элемента, называется пустым и обозначается Æ.

Множество A называется подмножеством множества B, если любой элемент множества A является элементом множества B. Пишут AÌB или BÉA и говорят, что множество A включено во множество B или B включает A.

Множества A и B называются равными, если они состоят из одних и тех же элементов. Записывают это так: A=B.

Включение AÌB не исключает равенства этих множеств. Если же AÌB, но A¹B и A¹Æ, то A называют собственным подмножеством множества B.

Если множество A включено во множество B или совпадает с ним, то пишут AÍB или BÊA.

Пример. Для числовых множеств имеют место следующие очевидные включения: N Ì Z Ì Q Ì R Ì C.

Множество называется конечным, если оно содержит конечное число элементов. Множество, не являющееся конечным, называется бесконечным.

Если заданы два множества A и B, то через AÈB обозначается множество, называемое их объединением или суммой и состоящее из всех тех элементов, каждый из которых принадлежит хотя бы одному из множеств A и B. Таким образом, если некоторый элемент принадлежит множеству AÈB, то он принадлежит либо только множеству A, либо только множеству B, либо обоим этим множествам одновременно.


Неопределенный интеграл лекции и задачи