Математика Математический анализ Предел функции Физический смысл производной Дифференциалы высших порядков Исследование поведения функции Построение графиков функций Интегрирование подстановкой Интегрирование по частям александров метрострой

Производная и дифференциал лекции и примеры

Гиперболические функции и их производные

Функции   называются соответственно гиперболическим косинусом и гиперболическим синусом.

Справедливы формулы

 ;

 .

Эти формулы напоминают соотношения между обычными (как их иногда называют, круговыми) синусом и косинусом. Для  имеется и ряд других соотношений, аналогичных соответствующим формулам для . Этим и объясняется название функций .

Частные , по аналогии с обычными синусами и косинусами, называют гиперболическим тангенсом и гиперболическим котангенсом соответственно.

Пример. Вычислить производную функций .


Неопределенный интеграл лекции и задачи