Техническое обслуживание автомобиля

Туризм
История абстрактного искусства
Беспредметное искусство ХХ века
Абстрактное искусство в России
Историческое  развитие абстрактного
метода в живописи
Абстрактная живопись в России
в послевоенный период
Символическая тенденция 
в абстрактном искусстве
Американский абстрактный экспрессионизм
Фовизм
Конструктивная живопись
Автотранспорт
Техническое обслуживание автомобиля
Автошкола
Ядерные испытания на архипелаге
Новая Земля
История советского термоядерного оружия
Деятельность полигона на архипелаге
Новая Земля
Основные вехи в истории создания
Новоземельского полигона
Краткие сведения о ядерных испытаниях
Радиоэкологическая обстановка
в районе губы Черная

Радиационная обстановки на материковой
части страны

Последствия испытаний ядерного
оружия на здоровье населения
Организация контрольных площадок
Семипалатинский полигон
Радиоэкологическая обстановка в зонах
проведения ядерных испытаний
Результаты изучения радиоэкологической
обстановки
Проект сооружения хранилищ
радиоактивных отходов
Информатика
Информационная защита
Лабораторные работы по электронике
Примеры выполнения
Принципы радиоизмерений
Исследование биполярного транзистора
Исследование стабилизированного
выпрямителя
Исследование усилительных каскадов
Исследование эмиттерного повторителя
Исследование истокового повторителя
Исследование дифференциального
каскада усилителя
Многофункциональный операционный
усилитель
Режим работы усилительных каскадов
Лабораторные работы по электротехнике
Исследование линейных электрических цепей
Расчет цепи смешанного соединения
сопротивления
Расчет трехфазной цепи по схеме звезда
Исследование сложной электрической цепи
постоянного тока
Исследование резонансных явлений
Исследование нелинейных цепей
постоянного тока
Исследование выпрямителя однофазного
и трехфазного токов
Исследование электрических фильтров
Исследование магнитного поля машины
постоянного тока
Курс лекций и задач по математике
Примеры решения задач
Уравнения эллиптического типа
Скалярное произведение векторов
Уравнение плоскости

Системы линейных уравнений

Математический анализ

Почему машина едет ?

Итак, двигатель работает. Синхронно с ним работают все системы его "жизнеобеспечения": система охлаждения, топливная система, система смазки, система зажигания. Но что происходит дальше с энергией вращающегося коленчатого вала автомобиля? Будем рассматривать "классику", т.е., заднеприводной тип автомобиля (в переднеприводных моделях, в общем-то, почти то же самое, за исключением некоторых нюансов). 

Почему же двигатель работает, но машина стоит на месте? "Секрет" кроется в сцеплении и коробке передач. Силовой агрегат автомобиля (двигатель в сборе) "заканчивается" маховиком (тем самым, который крутит стартер), который насажен на коленчатый вал двигателя. Естественно, что, когда двигатель работает, то вместе с коленвалом вращается и маховик. А вот дальше начинается самое "интересное". К силовому агрегату со стороны маховика крепится коробка передач автомобиля со сцеплением. Точнее, сначала идет сцепление, а затем коробка передач. Поскольку автомобиль, как правило, заводится на нейтральной передаче, то при работающем двигателе все "рабочие" зубья выведены из зацепления и первичный (ведущий) вал коробки передач вращается "вхолостую", т.е. крутящий момент на колеса автомобиля не передается - поэтому автомобиль стоит на месте. Для того, чтобы автомобиль тронулся и начал движение, необходимо включить первую передачу. Для этого следует выжать педаль сцепления (при этом сам механизм сцепления выключается, тем самым разъединяя работающий коленвал двигателя и первичный (ведущий) вал коробки передач) и рычагом переключения передач включить первую скорость (при этом шестерни соответствующей скорости войдут в зацепление с первичным (ведущим) валом коробки передач, но, поскольку, сцепление выключено, то крутящий момент двигателя не передается на коробку передач) и плавно отпустить педаль сцепления (для новичков это поначалу довольно трудный момент - научиться плавно трогаться с места). При этом сцепление опять включается, тем самым соединяя коленвал двигателя с первичным (ведущим) валом коробки передач, а, поскольку, первичный (ведущий) вал коробки передач уже находится в зацеплении с шестернями первой передачи, то крутящий момент от двигателя передается на колеса по цепочке:
поршень → коленвал → сцепление → коробка передач → карданный вал → главная передача заднего моста → полуось → колесо  

схема передачи крутящего момента двигателя на колеса машины  

СЕРДЦЕ АВТОМОБИЛЯ - ДВИГАТЕЛЬ

 

Двигатели внутреннего сгорания в зависимости от их конструктивных особенностей могут работать на бензине (инжекторные и карбюраторные двигатели), на соляре (дизели) и на газе.

Бензиновые двигатели являются самыми распространенными в мировом легковом автомобилестроении.

Они работают на жидком топливе (бензине) с принудительным зажиганием от свечей. Перед подачей в цилиндры двигателя бензин смешивается с воздухом в определенной пропорции с помощью специального устройства: карбюратора или инжектора, закрепляемых на двигателе снаружи. Поэтому бензиновые двигатели называют также двигателями с внешним смесеобразованием.

Иногда вместо бензина в таких двигателях используют газ (пропан-бутан). Для перевода бензинового двигателя на газ используется специальное оборудование.

Дизели - двигатели, работающие на соляре (дизельном топливе). В отличие от бензиновых двигателей в них применяется воспламенение от сжатия (в дизелях отсутствуют свечи зажигания). Смесеобразование (смешивание соляра с воздухом) в дизельных двигателях происходит непосредственно внутри цилиндров. Это двигатели с внутренним смесеобразованием.

Задача двигателя - «выдать на-гора» механическую энергию в виде вращения выходящего из него вала. По аналогии электродвигатель преобразует электроэнергию во вращение вала.

Топливо, находящееся в баке, потенциально несет тепловую энергию, которую двигатель превратит в механическую.

 

Итак, двигатель - это преобразователь тепловой энергии топлива в механическую

 

Различают следующие основные типы ДВС:

  • поршневой двигатель внутреннего сгорания;
  • роторно-поршневой двигатель внутреннего сгорания;
  • газотурбинный двигатель внутреннего сгорания.
  • Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются:

  • автономность;
  • универсальность (сочетание с различными потребителями);
  • невысокая стоимость;
  • компактность;
  • малая масса;
  • возможность быстрого запуска;
  • многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся:

  • высокий уровень шума;
  • большая частота вращения коленчатого вала;
  • токсичность отработавших газов;
  • невысокий ресурс;
  • низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают следующие поршенвые ДВС:

  • бензиновые двигатели;
  • дизельные двигатели.

Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Поршневой двигатель внутреннего сгорания имеет следующее общее устройство:

  • корпус;
  • кривошипно-шатунный механизм;
  • газораспределительный механизм;
  • впускная система;
  • топливная система;
  • система зажигания (бензиновые двигатели);
  • система смазки;
  • система охлаждения;
  • выпускная система;
  • система управления.

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Впускная система предназначена для подачи в двигатель воздуха.

  Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска .

Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.

Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя.

Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения . Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе .

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Принцип работы двигателя внутреннего сгоранияоснован на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель):

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия - порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

 


Принцип работы системы охлаждения двигателя автомобиля